AEROCOUSTIC®

Silentbarrier™

SOUND BARRIER TECHNOLOGY

The Art & Science of casting acoustical shadows

© Copyright 1992
All rights reserved
INTRODUCTION

In modern production facilities, noise control is more of a concern now than ever before. As OSHA, state, and local regulations become stricter, manufacturers must modify their facilities to meet these requirements. The three most fundamental approaches to noise control is to reduce the noise at the source, along the path of propagation, or at the receiver. In most cases of industrial noise control, modifying the path of propagation is the only viable solution. This can be achieved by the scientific placement of an acoustic barrier directly between the noise source and the receiver which modifies the path of the noise. Much the same as nature provides protection from the wind and heat of the sun with trees and mountains, barriers properly placed cast "acoustical shadows". Those objects within the "acoustical shadows" are shielded and protected from the noisy environment.

The AEROACOUSTIC Corp. offers a line of acoustic panels for construction of barriers to solve your noise problems. The standard Model 3P and 4P "Silentbarrier" acoustic panels or normal temperature applications are of tongue and groove construction for each assembly and disassembly. Barriers come in a wide selection of shapes: single shielding walls, multiple walls, wall-ceiling combinations. Depending upon the size of the barrier and the required loading, the barrier can either be self-supporting or be attached to a steel structure. The most common application is a free-standing straight wall or 'L' shaped. There is no limitation to the size or configuration of the barrier. Each barrier is custom designed to the specific requirements of the application. Barriers can easily be blended into the surrounding decor and be made esthetically pleasing.

OTHER BULLETINS AVAILABLE FROM THE AEROACOUSTIC CORP.

B-341 How to Select Industrial Silencers
B-729A How to Silence Your Fan
B-433 Silentflow® Splitter Silencers
B-46 Silentflow® Louvers
B-136 Silentflow® Tubular Silencers
B-137 Silentflow® Vaneaxial Silencers
B-332A Blowoff Silencers
B-238 Silentstack™ Stack Stuffer Silencers
B-235 Silentroom® Acoustic Enclosures and Portable Personnel Rooms
B-49 Silentflow® Electric Motor Silencers
B-148 Silentroom™ Enclosurers for Diesel Powered Equipment
B-67 How to Silence Your Small Gas Turbine
B-131 Silentflow® Gas Turbine Exhaust Silencing System
B-151 Silentjet™ Acoustical Sound Treatment for Jet Engine Test Cells
AC-101 Silentflow® Rectangular Duct Silencer
Silentbarrier™ ACOUSTIC PANEL CONSTRUCTION

MODEL 3P
This series replaces the previous Model 2P and addresses the Asian and European market which requires a 75mm panel. The application of this panel system includes open-top enclosures, enclosures, sound barriers and partitions where the required noise reduction is nominal. The materials of construction include a 16 gauge solid back coated with a viscoelastic film, three inches of acoustical fill and a 22 gauge perforated interior surface.

Average weight per square foot is 6.5 lbs.

MODEL 4P
This series is the industry standard panel which satisfies the noise reduction and sound absorption for almost all industrial applications, enclosures, rooms, plenums, partitions and sound barriers. The materials of construction include a 16 gauge solid back coated with a viscoelastic film, four inches of acoustical fill and a 22 gauge perforated interior.

Average weight per square foot is 7.0 lbs.

MODEL 4PHS
This series is used where maximum exterior noise reduction and no interior sound absorption is required. The use of this panel includes enclosures, partitions, sound barriers and thermal plenums. The materials of construction include a 16 gauge solid exterior surface, four inches of acoustical fill and a 16 gauge interior surface.

Average weight per square foot is 7.5 lbs.

MODEL 6P
This series is designed for use in the most severe acoustic environments providing a high noise reduction with the addition of sound absorption. The panels are used for enclosures, plenums and sound barriers for exceptionally noisy equipment. The materials of construction include a 16 gauge solid exterior surface, six inches of acoustical fill, a solid septum sheet and a 22 gauge perforated interior surface.

Average weight per square foot is 8.5 lbs.

STANDARD CONSTRUCTION
The exterior surface, internal channels and interior surface of the panels are of galvanized construction with a 3# Owens-Corning 703 resin-bonded fiberglass acoustic fill. The fill is inert, vermin and moisture proof and has a flame spread classification of 15 and a smoke development rating of zero. The panels are available in any width and height equal to or less than 60" wide by 144" long.

ALTERNATE CONSTRUCTION
When a painted surface is required, the panels are constructed of galvanneal. Galvannealed sheets are coated by a special process and then heat treated after coating to produce a zinc-iron alloy and eliminate the spangle. The panel can be painted without surface preparation other than normal cleaning. For applications in the chemical, pharmaceutical or food industry, the panels can be constructed of T-304 or T-316 stainless steel. Also, the acoustic fill in the panel can be wrapped with a protective layer of mylar to prevent contamination of the fill.

HI-TEMP CONSTRUCTION
When the temperature of the application is above 400°, the standard construction is not applicable. The panels can be constructed of either hot-rolled steel or T-409 stainless steel with a 6# US Gypsum mineral wood blanket acoustic fill and layer of glass cloth. If the panels are constructed of hot-rolled steel, they will be coated inside and out with a heat resistant flat black air dry coating. Either construction can withstand temperatures up to 1000°.
TABLE 1
TRANSMISSION LOSS OF Silentbarrier™ ACOUSTIC PANELS

Performance Certified by two (2) Independent Nationally Recognized Testing Laboratories in accordance with ASTM-E90-90 and E413-87 Test Standards.

<table>
<thead>
<tr>
<th>1/1 OCTAVE BAND FREQUENCY Hz</th>
<th>63</th>
<th>125</th>
<th>250</th>
<th>500</th>
<th>1000</th>
<th>2000</th>
<th>4000</th>
<th>8000</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/3 OCTAVE BAND FREQUENCY Hz</td>
<td>50</td>
<td>63</td>
<td>80</td>
<td>125</td>
<td>160</td>
<td>200</td>
<td>250</td>
<td>315</td>
</tr>
<tr>
<td>MODEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3P 3PH PANEL</td>
<td>40</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
</tr>
<tr>
<td>4P 4PH PANEL</td>
<td>44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4P WINDOW PANEL</td>
<td>43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4PHS T PANEL</td>
<td>53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4PHS WINDOW PANEL</td>
<td>48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4PHG DOOR PANEL</td>
<td>48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6P 6PH PANEL</td>
<td>55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE 2
SOUND ABSORPTION COEFFICIENT OF Silentbarrier™ ACOUSTIC PANELS

Performance Certified by two (2) Independent Nationally Recognized Testing Laboratories in accordance with ASTM C423-90a and E95-91 Test Standards.

<table>
<thead>
<tr>
<th>1/1 OCTAVE BAND FREQUENCY Hz</th>
<th>63</th>
<th>125</th>
<th>250</th>
<th>500</th>
<th>1000</th>
<th>2000</th>
<th>4000</th>
<th>8000</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/3 OCTAVE BAND FREQUENCY Hz</td>
<td>50</td>
<td>63</td>
<td>80</td>
<td>125</td>
<td>160</td>
<td>200</td>
<td>250</td>
<td>315</td>
</tr>
<tr>
<td>MODEL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3P PANEL</td>
<td>1.10</td>
<td>0.32</td>
<td>0.27</td>
<td>0.26</td>
<td>0.25</td>
<td>0.24</td>
<td>0.23</td>
<td>0.22</td>
</tr>
<tr>
<td>NRC</td>
<td></td>
<td>0.06</td>
<td>0.66</td>
<td>0.11</td>
<td>1.12</td>
<td>1.25</td>
<td>1.44</td>
<td>1.63</td>
</tr>
<tr>
<td>3PH PANEL</td>
<td>1.10</td>
<td>0.27</td>
<td>0.26</td>
<td>0.25</td>
<td>0.24</td>
<td>0.23</td>
<td>0.22</td>
<td>0.21</td>
</tr>
<tr>
<td>4P PANEL</td>
<td>1.15</td>
<td>0.47</td>
<td>0.46</td>
<td>0.45</td>
<td>0.44</td>
<td>0.43</td>
<td>0.42</td>
<td>0.41</td>
</tr>
<tr>
<td>4PH PANEL</td>
<td>1.05</td>
<td>0.55</td>
<td>0.78</td>
<td>1.10</td>
<td>1.66</td>
<td>1.05</td>
<td>0.63</td>
<td>0.59</td>
</tr>
<tr>
<td>4PHS PANEL</td>
<td></td>
<td>0.84</td>
<td>0.78</td>
<td>0.79</td>
<td>0.79</td>
<td>0.80</td>
<td>0.81</td>
<td>0.82</td>
</tr>
<tr>
<td>6P PANEL</td>
<td>0.86</td>
<td>0.26</td>
<td>0.37</td>
<td>0.60</td>
<td>0.66</td>
<td>1.00</td>
<td>0.60</td>
<td>0.59</td>
</tr>
<tr>
<td>6PH PANEL</td>
<td>0.90</td>
<td>0.47</td>
<td>0.46</td>
<td>0.52</td>
<td>0.44</td>
<td>0.43</td>
<td>0.42</td>
<td>0.41</td>
</tr>
</tbody>
</table>

* - ABSORPTION COEFFICIENTS ARE NOT AVAILABLE FOR A PANEL WITH SOLID SHEETS ON BOTH SIDES

1 - ESTIMATED VALUES PROVIDED FOR ACOUSTIC CALCULATIONS

NRC - NOISE REDUCTION COEFFICIENT
TYPICAL Silentbarrier™ ACOUSTIC BARRIER ASSEMBLY

- UPPER CHANNEL
- END CHANNEL
- WALL PANEL
- FLOOR CHANNEL
- CORNER MULLION
- WALL PANEL MULLION
- DOOR PANEL
The barrier is designed to reduce the noise which is emanating from a fuel line heater and the discharge stack. The barrier measures 16' long x 10' wide x 10' high and is constructed of Model 4P acoustic panels mounted to a steel structure.

The barrier measures 13' long x 10' wide x 12' high and is constructed of Model 4P acoustic panels mounted to a steel structure and is guy-wired for wind loading. The barrier is designed to isolate the fan discharge and casing radiated noise from the nearby residential property.

The barrier is mounted on the roof of an office building and is designed to isolate the noise emanating from the air-handling unit from the nearby residential property. The barrier measures 25' long x 12' wide x 13' high and is constructed of Model 4P acoustic panels mounted to a steel structure.
The barrier depicted above is shown during panel erection and below is an aerial view of the completed installation. The barrier measures 73' long x 35' wide x 45' high and is constructed of Model 4P panels mounted to a steel structure. The purpose of the barrier is to reduce the noise level from the elevated cooling towers by 25 dB in the 250 Hz band at the neighbors house which is shown below.
FORMED PANEL MULLION

ACOUSTIC FILL (2) PLACES
SEALANT (4) PLACES

WALL PANEL JOINT

DETAIL 1

FORMED PANEL MULLION

ACOUSTIC FILL (2) PLACES
SEALANT (4) PLACES

WALL PANEL CORNER DETAIL

DETAIL 2

FORMED EXTERIOR CORNER ANGLE
SEALANT (4) PLACES
FORMED WALL CORNER MULLION
ACOUSTIC FILL (2) PLACES

REMOVABLE WALL PANEL CORNER DETAIL

DETAIL 3

FORMED FLOOR CHANNEL
SEALANT (2) PLACES
SUITABLE ANCHOR

WALL PANEL TO FLOOR OR WALL JOINT

DETAIL 5

FORMED PANEL MULLION WITH REMOVABLE PLATE

ACOUSTIC FILL (2) PLACES
SEALANT (4) PLACES

REMOVABLE WALL JOINT

DETAIL 7

ACOUSTIC FILL

$\#_{10}$ SHEET METAL SCREWS ON 12" CENTERS (TYP.)

PARTITION WALL JOINT

DETAIL 4

EXISTING WALL
$\#_{10}$ SHEET METAL SCREWS ON 12" CENTERS (TYP.)
ACOUSTIC FILL
SEALANT (2) PLACES
SUITABLE ANCHOR
STRUCTURAL ANGLE

WALL PANEL TO EXISTING WALL JOINT

DETAIL 6

1/4" LAMINATED GLASS (TYP.)
DESSICANT BAG
GASKETED WINDOW RETAINING FRAME

WINDOW SEAL

DETAIL 8

GASKET
DOOR
GASKET

DOOR HEAD AND JAMB SEAL

DETAIL 9

DOOR
GASKET
SUITABLE ANCHOR

SINGLE/DUAL DOOR SILL SEAL

DETAIL 10

* BARRIER HEIGHT AND/OR WIDTH NOT TO EXCEED 12 FEET
STRUCTURAL PANEL CONNECTIONS *

DETAIL 1
- Structural tubing with plates welded on each side
- Acoustic fill (2) places
- 12 sheet metal screws on 12" centers (Typ.)
- Sealant (4) places

DETAIL 2
- Structural tubing with plate welded on one end and bolted on the other end
- 3/8-16 x 1" HHCs on 12" centers
- Acoustic fill (2) places
- Sealant (4) places

DETAIL 3
- W5x16 structural beam
- Acoustic fill (2) places
- 12 sheet metal screws on 12" centers (Typ.)
- Sealant (4) places

DETAIL 4
- Structural tubing with plate bolted on with 3/8-16 x 1" HHCs on 12" centers
- Acoustic fill (2) places
- Structural angle welded to beam

DETAIL 5
- Structural tubing with plates welded on side
- Acoustic fill (2) places
- 12 sheet metal screws on 12" centers (Typ.)
- Sealant (4) places

DETAIL 6
- Wide flange structural beam
- 12 sheet metal screws on 12" centers (Typ.)
- Structural angle welded to beam

DETAIL 7
- Exterior corner angle
- Acoustic fill (3) places
- W5x16 structural beam
- 12 sheet metal screws on 12" centers (Typ.)
- Sealant (4) places

DETAIL 8
- Panel mullion
- Acoustic fill (3) places
- 12 sheet metal screws on 12" centers (Typ.)
- Wide flange structural beam
- Sealant (4) places

DETAIL 9
- Formed mullion with plate welded on one side and bolted on the other side
- 1/4-20 x 1" HHCs on 12" centers
- Acoustic fill (2) places
- Sealant (4) places

* BARRIER HEIGHT AND/OR WIDTH EXCEEDS 12 FEET
DESIGN AND PERFORMANCE

The use of an acoustic barrier between a noise source and the receiver is an effective solution to reduce the noise level at the receiver without interfering with the operation or maintenance of the equipment. The physical dimensions and location of the barrier are critical so as to envelop the noise sensitive area in the "acoustical shadow" cast by the barrier. The calculations below and the charts on the following pages are based upon an infinite outdoor barrier in a free field. An infinite barrier is defined as a barrier whose length greatly exceeds its height so that the only noise to reach the receiver is from over the top of the barrier. A free field means an area where there are no reflective surfaces such as other walls, roofs, or equipment which can increase the noise level at the receiver.

The placement and height of a barrier with respect to the noise source will greatly affect the barriers' performance. The insertion loss of a barrier can be increased by raising the height of the barrier or moving the noise source or receiver closer to the barrier. The insertion loss of an infinite outdoor barrier in a free field can be estimated based upon the following equations:

\[
IL = 10 \log(N + 0.2) + 12.0
\]

\[
N = \frac{2 \Delta}{\lambda}
\]

\[
\Delta = A + B - D
\]

where:

- **IL**: insertion loss (per octave band in dB)
- **N**: Fresnel number for diffraction around the barrier edge
- **\(\Delta \)**: difference between the shortest diffracted path and the direct path without a barrier
- **\(\lambda \)**: wavelength (ft)
- **\(c \)**: speed of sound: 1,125 ft/sec
- **\(f \)**: frequency (Hz)

Using the above equations and the example shown below, the estimated insertion loss of the barrier is as follows:

<table>
<thead>
<tr>
<th>Octave Bank Center Frequency</th>
<th>62.5</th>
<th>125</th>
<th>250</th>
<th>500</th>
<th>1000</th>
<th>2000</th>
<th>4000</th>
<th>8000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barrier Insertion Loss</td>
<td>9.0</td>
<td>11.0</td>
<td>13.5</td>
<td>16.1</td>
<td>19.0</td>
<td>21.9</td>
<td>24.9</td>
<td>27.9</td>
</tr>
</tbody>
</table>

The above calculated insertion loss values are accurate, however, there is a physical upper limit due to atmospheric irregularities and turbulence. Experimental data has shown that the upper limit is approximately 24 dB, therefore, in the above example, the 4000 and 8000 Hz band is limited to 24 dB. When designing a barrier, several factors should be taken into consideration:

- the transmission loss of the barrier must be 10 dB greater in each of the eight octave bands than the insertion loss to eliminate any noise contribution which could reach the receiver thru the barrier.
- the barrier should break the line of sight between the noise source and the receiver. If the barrier, noise source and the receiver are at the same elevation, the insertion loss of the barrier will be 5 dB.
- the sound absorbent side of the barrier should face towards the noise source to reduce the build-up of sound between the source and the barrier and also reduce the noise which is reflected in the opposing direction. This will increase the insertion loss of barrier by 1 or 2 dB.

One drawback with these calculations is that it is based upon an infinite barrier which is almost never the case in a practical application. However, the following correction factors can be used to estimate the insertion loss of a semi-infinite barrier. After calculating the finite barrier insertion loss values, subtract the following corrections based upon a ratio of the barrier length versus height:

<table>
<thead>
<tr>
<th>Ratio of length/height</th>
<th>1.0</th>
<th>2.0</th>
<th>3.0</th>
<th>4.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correction Factor</td>
<td>5.0</td>
<td>3.0</td>
<td>2.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

![Diagram](image_url)
In lieu of plodding thru the calculations on the previous page, above is an easy to use insertion loss chart. Using this chart, the only item which has to be calculated is Δ (delta). Once this is calculated, add 1.8 to Δ, draw a vertical line at this value on the chart and read the intersection points with the frequency curves to obtain the insertion loss values remembering to take into consideration the 24 dB upper limit.

The previous calculations are based upon an infinite barrier in a free field. When the barrier is placed outdoors, nearby reflective surfaces should be evaluated and taken into consideration when calculating the sound pressure levels. Also, if the barrier is placed indoors, the insertion loss and acoustic analysis becomes very complicated. In either case, please contact The AEROACOUSTIC Corp's Engineering Department for assistance.